Publications
* Denotes undergraduate research students whom I supervised, $ denotes graduate students I supervised
If you do not have access via the links provided and would like a PDF of any publication(s), I am happy to provide them via email.
Thompson FR III, Bonnot TW, Brasso RL, Roach MC, $Hixson K, Mosby DE. 2024. Songbird annual productivity declines with increasing soil lead contamination around nests. Ornithological Applications, duae021.
Cusset F, Bustamante P, Carravieri A, Bertin C, Brasso R, Corsi I,Dunn M, Emmerson L, Guillou G, Hart T, Juáres M, KatoA, Machado-Gaye AL, Michelot C, Olmastroni S, Polito M, Raclot T, Santos M, Schmidt A, Southwell C, Soutullo A, Takahashi A, Thiebot JB, Trathan P, Vivion P, Waluda C, Fort J, Cherel Y. 2023. Circumpolar assessment of mercury contamination: the Adélie penguin as a bioindicator of Antarctic marine ecosystems. Ecotoxicology, 32: 1024-1049. https://doi.org/10.1007/s10646-023-02709-9
Brasso R, Cleveland D, Thompson III FR, Mosby DE, $Hixson K, Roach M, Rattner BA, Karouna-Renier NK, Lankton JS. 2023.Effects of lead exposure on birds breeding in the Southeast Missouri Lead Mining District: U.S. Geological Survey Scientific Investigations Report 2023–5032, 127 p., https://doi.org/10.3133/sir20235032.
Lois NA, Balza U, Brasso R, Dodino S, Pütz K, Polito MJ, Riccialdelli L, Ciancio J, Quillfeldt P, Mahler
B, Raya Rey A. 2022. Mercury and stable isotopes portray colony-specific foraging grounds in southern rockhopper penguins over the Patagonian Shelf. Marine Pollution Bulletin, 184: 113-137. https://doi.org/10.1016/j.marpolbul.2022.114137
Lam KJ, Midway SR, Brasso RL, Lopez-Duarte PC, Kimball ME, Polito MJ. 2022. Mercury
biomagnification in a coastal Louisiana food web following the 2010 Deepwater Horizon Oil Spill. Frontiers in Environmental Science, 10: https://doi.org/10.3389/fenvs.2022.937124
Dodino S, Riccialdelli L, Polito MJ, Pütz K, Brasso RL, Raya Rey A. 2021. Mercury exposure driven by
geographic and trophic factors in Magellanic penguins from Tierra del Fuego. Marine Pollution Bulletin, 174: https://doi.org/10.1016/j.marpolbul.2021.113184
Balza U, Brasso R, Lois NA, Pütz K, Raya Rey A. 2021. The highest mercury concentrations ever
reported in a South American bird, the Striated caracara (Phalcoboenus australis). Polar Biology, 44: 2189-2193. https://doi.org/10.1007/s00300-021-02938-w
Schutt D, Brasso RL, Vajda AM, Wunder MB. 2021. Comparison of feather mercury concentrations in
live-caught vs. found-dead chick carcasses of Gentoo penguins (Pygoscelis papua). Polar Biology, 44: 1955-1960. https://doi.org/10.1007/s00300-021-02929-x
McCormick A, Robertson MD, Brasso R, Midway SR. 2020. Mercury concentrations in store bought
shrimp. Food Science and Nutrition, 8: 731-3737. https://doi.org/10.1002/fsn3.1659
Zarn AM, Valle CA, Brasso R, Fetzner WD, Emslie SD. 2020. Stable isotope and mercury analysis of
the Galapagos Islands seabird community. Marine Ornithology, 48: 71-80. http://www.marineornithology.org/PDF/48_1/48_1_71-80.pdf
Brasso R, $Rittenhouse KA, Winder GL. 2020. Are wetlands hotspots for bioaccumulation of mercury for
songbirds? Ecotoxicology, 29: 1183–1194. https://doi.org/10.1007/s10646-020-02160-0
Ackerman JT, Herzog MP, Evers DC, Cristol DA, Kenow KP, Heinz G, Lavoie RA, Brasso RL, Mallory ML, Provencher JF, Braune BM, Matz A, Schmutz JA, Eagles-Smith CA, Savoy LJ, Meyer MW, Hartman CA. 2019. Synthesis of maternal transfer of mercury in birds: Implications for altered toxicity risk. Environmental Science and Technology, 54: 2878-2891. https://pubs.acs.org/doi/pdf/10.1021/acs.est.9b06119
Emslie SD, Alderman A, McKenzie A, Brasso R, Taylor AR, Moreno MM, Cambra-Moo O, González Martín A, Silva AM, Valera A, García Sanjuán L, Vijande Vila E. 2019. Mercury in archaeological human bone: biogenic or diagenetic? Journal of Archaeological Science, 108 https://doi.org/10.1016/j.jas.2019.05.005
Ropert-Coudert Y, Chiaradia A, Ainley D, Barbosa A, Boersma PD, Brasso R, Dewar M, Ellenberg U, García-Borboroglu P, Emmerson L, Hickcox R, Jenouvrier S, Kato A, McIntosh RR, Lewis P, Ramírez F, Ruoppolo R, Ryan PG, Seddon PJ, Sherley RB, Vanstreels RET, Waller LJ, Woehler EJ, Trathan PN. 2019. Happy feet in a hostile world? The future of penguins depends on proactive management of current and expected threats. Frontiers in Marine Science, 6. https://doi.org/10.3389/fmars.2019.00248
Tsui MT, Liu S, Brasso RL, Blum JD, Kwon SY, Ulus Y, Nollet YH, Balogh SJ, Eggert SL, Finlay JC. 2019. Controls of methylmercury bioaccumulation in forest floor food webs. Environmental Science & Technology, 53: 2434-2440. https://pubs.acs.org/doi/full/10.1021/acs.est.8b06053
Benjamin T, Brasso R, Midway S, Thompson D, Harden LA. 2018. Using non-destructive techniques to
measure mercury (Hg) concentrations in gravid Blandings turtles (Emydoidea blandingii) in northeastern Illinois. Bulletin of Environmental Contamination and Toxicology 101: 295-299. https://doi.org/10.1007/s00128-018-2407-4
Polito MJ, Brasso RL, Trivelpiece WZ, Karnovsky N, Patterson WP, Emslie SD. 2016. Differing Foraging Strategies Influence Mercury (Hg) Exposure in an Antarctic Penguin Community. Environmental Pollution 218: 196-206. https://doi.org/10.1016/j.envpol.2016.04.097
Fournier AMV, Welsh KJ, Polito MJ, Emslie SD, Brasso RL. 2016. Levels of Mercury in Feathers of Clapper Rails (Rallus crepitans) over 45 Years in Coastal Salt Marshes of New Hanover County, North Carolina. Bulletin of Environmental Contamination and Toxicology 97: 469-473. https://doi.org/10.1007/s00128-016-1870-z
Emslie SD, Brasso RL, Patterson W, Valera AC, McKenzie A, Silva AM, Gleason J, Blum J. 2015.
Chronic mercury exposure in Late Neolithic/Chalcolithic populations in Portugal from the cultural use of cinnabar. Chronic mercury exposure in Late Neolithic/Chalcolithic populations in Portugal from the cultural use of cinnabar. Scientific Reports 5:14679, DOI: 10.1038/srep14679.
Brasso RL, Chiaradia A, Polito MJ, Raya Rey A, Emslie S. 2015. A comprehensive assessment of mercury exposure in penguin populations throughout the Southern Hemisphere: Using trophic calculations to identify sources of population-level variation. Marine Pollution Bulletin, 97: 408-418. https://doi.org/10.1016/j.marpolbul.2015.05.059
Emslie SD, Polito MJ, Brasso RL, Patterson WP, Sun L. 2014. Ornithogenic soils and the paleoecology of pygoscelid penguins in Antarctica. Quaternary International, 352: 4-15. https://doi.org/10.1016/j.quaint.2014.07.031
Brasso RL, Polito MJ, Emslie SD. 2014. Multi-tissue analyses reveal limited inter-annual and seasonal variation in mercury exposure in an Antarctic penguin community. Ecotoxicology 23: 1494-1504. https://doi.org/10.1007/s10646-014-1291-x
Brasso RL, Lang J*, Jones CD, Polito MJ. 2014. Ontogenetic niche expansion influences mercury exposure in the Antarctic silverfish (Pleuragramma antarcticum). Marine Ecology Progress Series 504: 253-263. https://www.int-res.com/articles/meps2014/504/m504p253.pdf
Brasso RL, Polito MJ. 2013. Trophic calculations reveal the mechanism of population-level variation in mercury concentrations between marine ecosystems: Case studies of two polar seabirds. Marine Pollution Bulletin 75: 244-249. https://doi.org/10.1016/j.marpolbul.2013.08.003
Brasso RL, Drummond BE*, Borrett SR, Chiaradia A, Polito MJ, Raya Rey A. 2013. Unique pattern of molt leads to low intra-individual variation in feather mercury concentrations in penguins. Environmental Toxicology and Chemistry, 32, 2331-2334. https://setac.onlinelibrary.wiley.com/doi/pdf/10.1002/etc.2303
Brasso RL, Polito MP, Lynch HJ, Naveen R, Emslie SD. 2012. Penguin eggshell membranes reflect homogeneity of mercury in the marine food web surrounding the Antarctic Peninsula. Science of the Total Environment, 439:165-171. https://doi.org/10.1016/j.scitotenv.2012.09.028
Brasso RL, Abel S, Polito MP. 2011. Pattern of Mercury Allocation into Egg Components is Independent of Dietary Exposure in Gentoo Penguins. Archives of Environmental Contamination and Toxicology, 62: 494-501. https://doi.org/10.1007/s00244-011-9714-7
Hallinger KK*, Cornell KL, Brasso RL, Cristol, DA. 2011. Mercury exposure and survival in free-living tree swallows (Tachycineta bicolor). Ecotoxicology, 20: 39-46. https://doi.org/10.1007/s10646-010-0554-4
Brasso RL, Abdel Latif M*, Cristol DA. 2010. Relationship between laying sequence and mercury concentration in tree swallow eggs. Environmental Toxicology and Chemistry 29:1155-1159. https://setac.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/etc.144
Monroe AP*, Hallinger KK*, Brasso RL, Cristol DA. 2008. Occurrence and implications of double brooding in a southern population of tree swallows. Condor 110:382-386. https://doi.org/10.1525/cond.2008.8341
Cristol DA, Brasso RL, Condon AM, Fovargue RE, Friedman SL, Hallinger KK, Monroe AP, White AE. 2008. The movement of aquatic mercury through terrestrial food webs. Science 320:335. https://people.wm.edu/~dacris/pdfs/Cristol_Science.pdf
Friedman SL, Brasso RL, Condon AM. 2008. An improved simple nest-box trap. Journal of Field Ornithology 79:99-101. https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1557-9263.2008.00150.x
Brasso RL, Cristol DA. 2008. Effects of mercury exposure on the reproductive success of tree swallows (Tachycineta bicolor). Ecotoxicology 17:133-141 https://doi.org/10.1007/s10646-007-0163-z
Brasso RL, Emslie SD. 2006. Two new late Pleistocene avifaunas from New Mexico. Condor 108:721-730. https://www.jstor.org/stable/pdf/4151093.pdf